CS 267 Applications of Parallel Computers
Lecture 10:

Sources of Parallelism and Locality
(Part 2)

David H. Bailey

based on previous lecture notes by Jim
Demmel and Dave Culler

http://www.nersc.gov/~dhbailey/cs267

Recap of last lecture

° Simulation models

° A model problem: sharks and fish
° Discrete event systems

° Particle systems

° Lumped systems - ordinary differential equations
(ODESs)

Outline

° Continuation of (ODES)
° Partial Differential Equations (PDESs)

Ordinary Differential Equations
ODEs

o

o

o

o

Solving ODEs

Explicit methods to compute solution(t)
o Example: Euler's method.
« Simple algorithm: sparse matrix vector multiply.
 May need to take very small time steps, especially if system is stiff (i.e.
can change rapidly).
Implicit methods to compute solution(t)
 Example: Backward Euler’s Method.
o Larger timesteps, especially for stiff problems.
* More difficult algorithm: solve a sparse linear system.

Computing modes of vibration
* Finding eigenvalues and eigenvectors.
 Example: do resonant modes of building match earthquakes?

All these reduce to sparse matrix problems
« Explicit: sparse matrix-vector multiplication.
e Implicit: solve a sparse linear system
- direct solvers (Gaussian elimination).
- iterative solvers (use sparse matrix-vector multiplication).
» Eigenvaluel/vector algorithms may also be explicit or implicit.

o

o

o

o

Solving ODEs - Detalls

Assume ODE is x’(t) = f(x) = A*x, where A is a sparse matrix
* Try to compute x(i*dt) = x[i] at i1=0,1,2,...
o Approximate x’(i*dt) by (x[i+1] - x[i])/dt

Euler’'s method:

o Approximate x’(t)=A*x by (x[i+1] - x[i])/dt = A*x][i] and solve for
x[i+1].

o X[I+1] = (I+dt*A)*x[i], I.e. sparse matrix-vector multiplication.
Backward Euler’s method:

o Approximate x’(t)=A*x by (x[i+1] - x[i])/dt = A*x[i+1] and solve for
x[i+1].

e (I - dt*A)*x[i+1] = x[i], i.e. We need to solve a sparse linear system
of equations.

Modes of vibration

o Seek solution of x”’(t) = A*x of form x(t) = sin(f*t)*x0, where x0 is a
constant vector.

* Plug in to get -f *x0 = A*x0, so that -f is an eigenvalue and x0 is
an eigenvector of A.

» Solution schemes reduce either to sparse-matrix multiplication,
or solving sparse linear systems.

Parallelism in Sparse Matrix-vector multiplication

°y =A*X,where Ais sparseand n x n

° Questions
* which processors store
- ylil, x[i], and A[i,j]
e which processors compute
- y[i] =sum (from 1 to n) A[i,j] * X][j]
= (row i of A) * x ... a sparse dot product

° Partitioning
o Partition index set {1,...,n} =N1u N2u ... u Np.
 For alliin Nk, Processor k stores y[i], x[i], and row i of A
 For alliin Nk, Processor k computes y[i] = (row i of A) * x
- “owner computes” rule: Processor k compute the yJ[i]s it owns.

° Goals of partitioning
e balance load (how is load measured?).
» balance storage (how much does each processor store?).
* minimize communication (how much is communicated?).

Graph Partitioning and Sparse Matrices

° Relationship between matrix and graph

1 2 3 4 5 6
111 1 1
2111 1 1 1
3 11 1 4
4 1 1 1 1
511 1 1 1
6 1 1 1 1 >
q\J>\5

° A “good” partition of the graph has

» equal (weighted) number of nodes in each part (load and storage
balance).

« minimum number of edges crossing between (minimize communication).

° Can reorder the rows/columns of the matrix by putting all the
nodes in one partition together.

More on Matrix Reordering via Graph Partitioning

° “Ideal” matrix structure for parallelism: (nearly) block diagonal
 p (humber of processors) blocks.
« few non-zeros outside these blocks, since these require communication.

PO
Pl

N

3

What about implicit methods and eigenproblems?

° Direct methods (Gaussian elimination)
» Called LU Decomposition, because we factor A = L*U.
e Future lectures will consider both dense and sparse cases.
 More complicated than sparse-matrix vector multiplication.

° lterative solvers
 Will discuss several of these in future.

- Jacobi, Successive overrelaxiation (SOR) , Conjugate
Gradients (CG), Multigrid,...

 Most have sparse-matrix-vector multiplication in kernel.

° Eigenproblems
» Future lectures will discuss dense and sparse cases.

* Also depend on sparse-matrix-vector multiplication, direct
methods.

° Graph partitioning

» Algorithms will be discussed in future lectures.

Partial Differential Equations
PDEs

Continuous Variables, Continuous Parameters

Examples of such systems include

°Heat flow: Temperature(position, time)
° Diffusion: Concentration(position, time)

° Electrostatic or Gravitational Potential:
Potential(position)

° Fluid flow: Velocity,Pressure,Density(position,time)
° Quantum mechanics: Wave-function(position,time)

° Elasticity: Stress,Strain(position,time)

Example: Deriving the Heat Equation

| —— |

0 X-h X X+h 1
Consider a simple problem

° A bar of uniform material, insulated except at ends
°Let u(x,t) be the temperature at position x at time t

° Heat travels from x-h to x+h at rate proportional to:

d u(x,t) - (u(x-h,t)-u(x,t))/h - (u(x,t)- u(x+h,t))/h

dt h

°As h— 0, we get the heat equation:
d u(x,t) C * d? u(x,t)
dt dx?

Explicit Solution of the Heat Equation

° For simplicity, assume C=1
° Discretize both time and position

° Use finite differences with ulj,i] as the heat at
e timet=i*dt (i=0,1,2,...) and position x = j*h (_| O 1,. N 1/h)

e initial conditions on u[j,0] }____4_____;_; _____ T _____ T
* boundary conditions on u[0,i] and u[N,i] '
t=5 |- N S S N
° At each timestep i =0,1,2,... S N T O U B
For j=0to N t=3 i---- ﬂ ----- ----- ----- |
ulj,i+1]= z*u[j-1,i]+ (1-2*2)*u[j,i]+ N /I\ _____ i
z*u[j+1,i] i i i i
t=1 t----- Rl BLCEE AL EEt
where z = dt/h? o

° This corresponds to t=0 -
. . .) u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]
* matrix vector multiply (what is matrix?)
* nearest neighbors on grid

Parallelism in Explicit Method for PDEs

° Partitioning the space (x) into p largest chunks
* good load balance (assuming large number of points relative to p)
 minimized communication (only p chunks)

° Generalizes to
 multiple dimensions.
o arbitrary graphs (= sparse matrices).

° Problem with explicit approach
* numerical instability.
« solution blows up eventually if z = dt/h?> .5
* need to make the time steps very small when h is small: dt < 5

Instability in solving the heat equation explicitly

Expllek Saluden of Haat agquathon, z=0 42

Implicit Solution

°> As with many (stiff) ODEs, we need to use an implicit
method.

° This turns into solving the following equation:
(I + (z/2)*T) * u[:,i+1]= (I - (z/2)*T) *u[:,I]

°Here | is the identity matrix and T is:

(\

2 -1 (11 R

Graph and “stencil
-1 2 -1
1 2 1 €cE——
T= i i
1 2 1 1 2 1

\ 12

°l.e., essentially solving Poisson’s equation in 1D

2D Implicit Method

° Similar to the 1D case, but the matrix T IS how

(4 1 1 \ Graph and “stencil”
1 4 -1 1
1 4 1
1 4 -1 1
T= 1 1 4 A1 1
1 1 4 1
1 4 -1
1 1 4 -1
\ 1 1 4

> Multiplying by this matrix (as in the explicit case) is
simply nearest neighbor computation on 2D grid.

°To solve this system, there are several techniques.

Algorithms for 2D Poisson Equation with N unknowns

Algorithm Serial PRAM Memory #Procs
° Dense LU N3 N N2 N2
° Band LU \E N N3/2 N
° Jacobi N2 N N N
° Explicit Inv. N2 log N N2 N2
° Conj.Grad. N 3/2 N 2 *og N N N
° RB SOR N 3/2 N 172 N N
° Sparse LU N 3/2 N 1/2 N*log N N
° FFT N*log N log N N N
° Multigrid N log? N N N
° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

(see next slide for explanation)

Short explanations of algorithms on previous slide

Sorted in two orders (roughly):
» from slowest to fastest on sequential machines.
« from most general (works on any matrix) to most specialized (works on matrices “like” T).

Dense LU: Gaussian elimination; works on any N-by-N matrix.

Band LU: Exploits the fact that T is nonzero only on sqrt(N) diagonals nearest
main diagonal.

Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative
algorithm.

Explicit Inverse: Assume we want to solve many systems with T, so we can
precompute and store inv(T) “for free”, and just multiply by it (but still
expensive).

Con|j1ugate_ Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits
mathematical properties of T that Jacobi does not.

Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits
yet different mathematical properties of T. Used in multigrid schemes.

LU: Gaussian elimination exploiting particular zero structure of T.

FFT (fast Fourier transform): Works only on matrices very like T.

Multigrid: Also works on matrices like T, that come from elliptic PDEs.

Lower Bound: Serial (time to print answer); parallel (time to combine N inputs).

Details in class notes and www.cs.berkeley.edu/~demmel/ma221.

Relation of Poisson’s Equation to Gravity, Electrostatics

° Force on particle at (x,y,z) due to particle at O is
-(x,y,2)/r*3, wherer = sgrt(x “+y” +z°)

° Force is also gradient of potential V =-1/r
=-(d/dx V, d/dy V, d/dz V) = -grad V

°V satisfies Poisson’s equation (try it!)

Ralationchip of Potential ¥V and Foree —grad Vin 2D

Comments on practical meshes

° Regular 1D, 2D, 3D meshes

e Important as building blocks for more complicated meshes.

° Practical meshes are often irregular

« Composite meshes, consisting of multiple “bent” regular meshes
joined at edges.

e Unstructured meshes, with arbitrary mesh points and
connectivity.

« Adaptive meshes, which change resolution during solution
process to put computational effort where needed.

Composite mesh from a mechanical structure

Mechanical Structure with Mesh

E 1 1 1 1 1 1 1 1 1
1.5F =
1F =
\§ RARAE Y f

D5F B -

o\ i -

—05f Bas -
KA

. T -

=18 2
i

o _

A e s o 5 s 5 & %

Converting the mesh to a matrix

Mesh bered in natural ord 3 :
G871 MUMBEred In naturay oraer Matrix &, in natural order

[266:328) (330370) (371.406) (d07447) (446463 0

100 F

L {1:49) AN A

F il te1a2e7) A
I i BR
250 -

300 -

330

400 -

| |:5|u:91] | tggjlgg} I|:134:1'-"5|} | | 450+

| |
— =3 - -1 i 1 2 3 4)

Effects of Ordering Rows and Columns on Gaussian Elimination

1oof
sook
300F

4001

A in natural order

0 100 200 300 400

m =391

1007

200+

S00F

4001

Cholesky factor, flops=29E823

0 100 200 00 400
nz= 11533, red=fill-in

1007

200}

S00F

400

A after minimum degree

. T
i ™ "?::"!" Ak
-r Al

[PR LR

= ' HERH i
L P e
' 5

0 100 200 300 400

m =3971

0
i
1007
l'::-.;
200+ -
SO0t o
4DD B dg_
a gt
s & mpy -mj?'!_;i

Cholesky factor, flops=19823E

0 100 200 300 400
m =8440, red =filin

Irregular mesh: NASA Airfoil in 2D (direct solution)

Finite Element Mesh of NASA Airdoil

R,
sl

e

%

Ny

AN
0

0.3 0.4 0.5 D& o7 o.& g

o=

0.

4253 gqrid points

Structure of Cholesky factor L of A

Structure of A

0

10007

2000+

3000+

40001

1000}

2000+

3000+

4000 ¢

2000 3000

1000
nnz{J=214755 flops

2000 3000 4000

nnz{A)=25831

1000

4000

11533587

0

0

Irregular mesh: Tapered Tube (multigrid)

Example of Prometheus meshes

Adaptive Mesh Refinement (AMR)

°Adaptive mesh around an explosion.

°John Bell and Phil Colella at LBL/NERSC.

°Goal of Titanium is to make these algorithms easier to implement
In parallel.

Challenges of irregular meshes (and a few solutions)

° How to generate them in the first place:
* Triangle, a 2D mesh partitioner by Jonathan Shewchuk.

° How to partition them:
 ParMetis, a parallel graph partitioner.

° How to design iterative solvers:
« PETSc, a Portable Extensible Toolkit for Scientific Computing.

 Prometheus, a multigrid solver for finite element problems on
irregular meshes.

e Titanium, a language to implement Adaptive Mesh Refinement.

° How to design direct solvers:
e SuperLU, parallel sparse Gaussian elimination.

° These are challenges to do sequentially, the more so
In parallel.

